訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) J. Boidol, *-regularity of exponential Lie groups, Invent. Math., 56 (1980), 231-238. 2) H. Fujiwara, Sur le dual d'un groupe de Lie résoluble exponentiel, J. Math. Soc. Japan, 36 (1984), 629-636. 3) F. W. Keene, Square integrable representations and a Plancherel theorem for parabolic subgroups, Trans. Amer. Math. Soc., 243 (1978), 61-73. 4) D. Poguntke, Nichtsymmetrische sechsdimensionale Liesche Gruppen, J. Reine Angew. Math., 306 (1979), 154-176. 5) D. Poguntke, Symmetry and nonsymmetry for a class of exponential Lie groups, J. Reine Angew. Math., 315 (1980), 127-138. 6) D. Poguntke, Algebraically irreducible representations of L1-algebras of exponential Lie groups, Duke Math. J., 50 (1983), 1077-1106. 7) I. I. Pyatetskii-Shapiro, Automorphic functions and the geometry of classical domains, Gordon and Breach, New York, 1969. 8) H. Rossi, Lectures on representations of groups of holomorphic transformations of Siegel domains, Lecture Note, Brandeis Univ., 1972. 9) H. Rossi and M. Vergne, Representations of certain solvable Lie groups on Hilbert spaces of holomorphic functions and the application to the holomorphic discrete series of a semisimple Lie group, J. Functional Analysis, 13 (1973), 324-389. 10) P. Tauvel, Sur la bicontinuité de l'application de Dixmier pour les algèbres de Lie résolubles, Ann. Fac. Sci. Toulouse, 4 (1982), 291-308. 11) G. Warner, Harmonic analysis on semi-simple Lie groups, I, Springer, Berlin, 1972.
Right : [1] J. Boidol, *-regularity of exponential Lie groups, Invent. Math., 56 (1980), 231-238. [2] H. Fujiwara, Sur le dual d'un groupe de Lie résoluble exponentiel, J. Math. Soc. Japan, 36 (1984), 629-636. [3] F. W. Keene, Square integrable representations and a Plancherel theorem for parabolic subgroups, Trans. Amer. Math. Soc., 243 (1978), 61-73. [4] D. Poguntke, Nichtsymmetrische sechsdimensionale Liesche Gruppen, J. Reine Angew. Math., 306 (1979), 154-176. [5] D. Poguntke, Symmetry and nonsymmetry for a class of exponential Lie groups, J. Reine Angew. Math., 315 (1980), 127-138. [6] D. Poguntke, Algebraically irreducible representations of L1-algebras of exponential Lie groups, Duke Math. J., 50 (1983), 1077-1106. [7] I. I. Pyatetskii-Shapiro, Automorphic functions and the geometry of classical domains, Gordon and Breach, New York, 1969. [8] H. Rossi, Lectures on representations of groups of holomorphic transformations of Siegel domains, Lecture Note, Brandeis Univ., 1972. [9] H. Rossi and M. Vergne, Representations of certain solvable Lie groups on Hilbert spaces of holomorphic functions and the application to the holomorphic discrete series of a semisimple Lie group, J. Functional Analysis, 13 (1973), 324-389. [10] P. Tauvel, Sur la bicontinuité de l'application de Dixmier pour les algèbres de Lie résolubles, Ann. Fac. Sci. Toulouse, 4 (1982), 291-308. [11] G. Warner, Harmonic analysis on semi-simple Lie groups, I, Springer, Berlin, 1972.