訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) M. T. Anderson, Degeneration of metrics with bounded curvature and applications to critical metrics of Riemannian functionals, Differential Geometry: Riemannian geometry, (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 3, Amer. Math. Soc., Providence, RI, 1993, pp. 53-79. 2) P. Bérard, A lower bound for the least eigenvalue of Δ+V, Manuscripta Math., 69 (1990), 255-259. 3) P. Bérard, A note on Bochner type theorems for complete manifolds, Manuscripta Math., 69 (1990), 261-266. 4) C. B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm. Sup., 13 (1980), 419-435. 5) K. D. Elworthy and S. Rosenberg, Manifolds with wells of negative Ricci curvature, Invent. Math., 103 (1991), 471-495. 6) S. C. Ferry, Counting simple homotopy types in Gromov-Hausdorff space, preprint, 1991. 7) S. Gallot, Isoperimetric inequalities based on integral norms of Ricci curvature, Asterisque, 157-158 (1988), 191-216. 8) M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. IHES., 53 (1981), 183-215. 9) M. Gromov, J. Lafontaine and P. Pansu, Structures métriques pour les variétés riemanniennes, Paris, Cedic, 1981. 10) E. Heintze and H. Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. École Norm. Sup., 11 (1978), 451-470. 11) J. Milnor, A note on curvature and fundamental group, J. Differential Geometry, 2 (1968), 1-7. 12) J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure and Applied Math., 17 (1964), 101-134. 13) Z. Shen and G. Wei, On Riemannian manifolds of almost nonnegative curvature, Indiana Univ. Math. J., 40 (1991), no. 2, 551-565. 14) P. Petersen V., A finiteness theorem for metric spaces, J. Differential Geom., 31 (1990), 387-395. 15) G. Wei, On the fundamental groups of manifolds with almost nonnegative Ricci curvature, Proc. Amer. Math. Soc., 110 (1990), 197-199. 16) J.-Y. Wu, Complete manifolds with a little negative curvature, Amer. J. Math., 113 (1991), 567-572. 17) D. Yang, Convergence of Riemannian manifolds with integral bounds on curvature I, Ann. Sci. École Norm. Sup. (4), 25 (1992), no. 1, 77-105.
Right : [1] M. T. Anderson, Degeneration of metrics with bounded curvature and applications to critical metrics of Riemannian functionals, Differential Geometry: Riemannian geometry, (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 3, Amer. Math. Soc., Providence, RI, 1993, pp. 53-79. [2] P. Bérard, A lower bound for the least eigenvalue of Δ+V, Manuscripta Math., 69 (1990), 255-259. [3] P. Bérard, A note on Bochner type theorems for complete manifolds, Manuscripta Math., 69 (1990), 261-266. [4] C. B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm. Sup., 13 (1980), 419-435. [5] K. D. Elworthy and S. Rosenberg, Manifolds with wells of negative Ricci curvature, Invent. Math., 103 (1991), 471-495. [6] S. C. Ferry, Counting simple homotopy types in Gromov-Hausdorff space, preprint, 1991. [7] S. Gallot, Isoperimetric inequalities based on integral norms of Ricci curvature, Asterisque, 157-158 (1988), 191-216. [8] M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. IHES., 53 (1981), 183-215. [9] M. Gromov, J. Lafontaine and P. Pansu, Structures métriques pour les variétés riemanniennes, Paris, Cedic, 1981. [10] E. Heintze and H. Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. École Norm. Sup., 11 (1978), 451-470. [11] J. Milnor, A note on curvature and fundamental group, J. Differential Geometry, 2 (1968), 1-7. [12] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure and Applied Math., 17 (1964), 101-134. [13] Z. Shen and G. Wei, On Riemannian manifolds of almost nonnegative curvature, Indiana Univ. Math. J., 40 (1991), no. 2, 551-565. [14] P. Petersen V., A finiteness theorem for metric spaces, J. Differential Geom., 31 (1990), 387-395. [15] G. Wei, On the fundamental groups of manifolds with almost nonnegative Ricci curvature, Proc. Amer. Math. Soc., 110 (1990), 197-199. [16] J. -Y. Wu, Complete manifolds with a little negative curvature, Amer. J. Math., 113 (1991), 567-572. [17] D. Yang, Convergence of Riemannian manifolds with integral bounds on curvature I, Ann. Sci. École Norm. Sup. (4), 25 (1992), no. 1, 77-105.