訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Academic Press, New York, 1968. 2) H. Dym, Stationary measures for the flow of a linear differential equation driven by white noise, Trans. Amer. Math. Soc., 123 (1966), 130-164. 3) R. V. Erickson, Constant coefficient linear differential equations driven by white noise, Ann. Math. Statist., 42 (1971), 820-823. 4) J. B. Gravereaux, Probabilités de Lévy sur Rd et équations différentielles stochastiques linéaires, Université de Rennes 1, Publications des Séminaires de Mathé-matiques, Séminaire de Probabilités 1982, 42 pages. 5) Z. J. Jurek, An integral representation of operator-selfdecomposable random variables, Bull. Acad. Polon. Sér. Sci. Math., 30 (1982), 385-393. 6) Z. J. Jurek and W. Vervaat, An integral representation for selfdecomposable Banach space valued random variables, Z. Wahrsch. Verw. Gebiete, 62 (1983), 247-262. 7) U. Küchler and B. Mensch, Langevins stochastic differential equation extended by a time-delayed term, Stochastics Stochastics Rep., 40 (1992), 23-42. 8) J.-J. Liou, Recurrence and transience of Gaussian diffusion processes, Kodai Math. J., 13 (1990), 210-230. 9) K. Sato and M. Yamazato, Stationary processes of Ornstein-Uhlenbeck type, Lecture Notes in Math., 1021, Springer, 1983, pp. 541-551. 10) K. Sato and M. Yamazato, Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type, Stochastic Process. Appl., 17 (1984), 73-100. 11) K. Sato and M. Yamazato, Remarks on recurrence criteria for processes of Ornstein-Uhlenbeck type, Lecture Notes in Math., 1540, Springer, 1993, pp. 329-340. 12) T. Shiga, A recurrence criterion for Markov processes of Ornstein-Uhlenbeck type, Probab. Theory Related Fields, 85 (1990), 425-447. 14) S. J. Wolfe, A characterization of certain stochastic integrals, Tenth Conference on Stochastic Processes and Their Applications, Contributed Papers, Stochastic Process. Appl., 12 (1982), 136.
Right : [1] R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Academic Press, New York, 1968. [2] H. Dym, Stationary measures for the flow of a linear differential equation driven by white noise, Trans. Amer. Math. Soc., 123 (1966), 130-164. [3] R. V. Erickson, Constant coefficient linear differential equations driven by white noise, Ann. Math. Statist., 42 (1971), 820-823. [4] J. B. Gravereaux, Probabilités de Lévy sur Rd et équations différentielles stochastiques linéaires, Université de Rennes 1, Publications des Séminaires de Mathé-matiques, Séminaire de Probabilités 1982, 42 pages. [5] Z. J. Jurek, An integral representation of operator-selfdecomposable random variables, Bull. Acad. Polon. Sér. Sci. Math., 30 (1982), 385-393. [6] Z. J. Jurek and W. Vervaat, An integral representation for selfdecomposable Banach space valued random variables, Z. Wahrsch. Verw. Gebiete, 62 (1983), 247-262. [7] U. Küchler and B. Mensch, Langevins stochastic differential equation extended by a time-delayed term, Stochastics Stochastics Rep., 40 (1992), 23-42. [8] J. -J. Liou, Recurrence and transience of Gaussian diffusion processes, Kodai Math. J., 13 (1990), 210-230. [9] K. Sato and M. Yamazato, Stationary processes of Ornstein-Uhlenbeck type, Lecture Notes in Math., 1021, Springer, 1983, pp. 541-551. [10] K. Sato and M. Yamazato, Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type, Stochastic Process. Appl., 17 (1984), 73-100. [11] K. Sato and M. Yamazato, Remarks on recurrence criteria for processes of Ornstein-Uhlenbeck type, Lecture Notes in Math., 1540, Springer, 1993, pp. 329-340. [12] T. Shiga, A recurrence criterion for Markov processes of Ornstein-Uhlenbeck type, Probab. Theory Related Fields, 85 (1990), 425-447. [13] S. J. Wolfe, On a continuous analogue of the stochastic difference equation Xn=ρXn-1+Bn, Stochastic Process. Appl., 12 (1982), 301-312. [14] S. J. Wolfe, A characterization of certain stochastic integrals, Tenth Conference on Stochastic Processes and Their Applications, Contributed Papers, Stochastic Process. Appl., 12 (1982), 136.