訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : A) H. H. Andersen, Finite dimensional representations of quantum groups, to appear in Proc. Sympos. Pure Math.. APW) H. H. Andersen, P. Polo and W. Kexin, Representations of quantum algebras, Invent. Math., 104 (1991), 1-59. AW) H. H. Andersen and W. Kexin, Representations of quantum algebras, The mixed case, J. Reine Angew. Math., 427 (1992), 35-50. BV) D. Barbasch and D. Vogan, Weyl Group Representations and Nilpotent Orbits, In Representation Theory of Reductive Groups, (ed. P. C. Trombi), Birkhauser, 1983, pp. 21-33. L1) G. Lusztig, Modular representations and quantum groups, in Classical groups and related topics, Contemp. Math., 82 (1989), 59-77. L2) G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata, 35 (1990), 89-114. H) S. G. Hulsurkar, Proof of Verma's conjecture on Weyl's dimension polynomial, Invent. Math., 27 (1974), 45-52. J) J. C. Jantzen, Über das Dekompositionsverhalten gewisser modularer Darstellungen halbeinfacher Gruppen und ihrer Lie-Algebren, J. Algebra, 49 (1977), 441-469, Satz 1. P1) R. Parthasarathy, Quantum analogues of a coherent family of modules at roots of unity: A2, B2, In Current Trends in Mathematics and Physics- A Tribute to Harish-Chandra, (ed. S. D. Adhikari), Narosa, New Delhi, 1995. (http://e-math.ams.org/web/preprints/17/199410/199410-17-001/199410-17-00i.ps) P2) R. Parthasarathy, Quantum analogues of a coherent family of modules at roots of unity: A3 (preprint). V) D.-N. Verma, The role of affine Weyl groups in the representation theory of algebraic Chevalley groups and their Lie algebras, In Lie Groups and Their Representations, Proc. Budapest 1971, (ed. I. M. Gel'fand), pp. 653-705. Vo) D. A. Vogan, Representations of Real Reductive Groups, Birkhäuser, Boston, 1981.
Right : [A] H. H. Andersen, Finite dimensional representations of quantum groups, to appear in Proc. Sympos. Pure Math.. [APW] H. H. Andersen, P. Polo and W. Kexin, Representations of quantum algebras, Invent. Math., 104 (1991), 1-59. [AW] H. H. Andersen and W. Kexin, Representations of quantum algebras, The mixed case, J. Reine Angew. Math., 427 (1992), 35-50. [BV] D. Barbasch and D. Vogan, Weyl Group Representations and Nilpotent Orbits, In Representation Theory of Reductive Groups, (ed. P. C. Trombi), Birkhäuser, 1983, pp. 21-33. [L1] G. Lusztig, Modular representations and quantum groups, in Classical groups and related topics, Contemp. Math., 82 (1989), 59-77. [L2] G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata, 35 (1990), 89-114. [H] S. G. Hulsurkar, Proof of Verma's conjecture on Weyl's dimension polynomial, Invent. Math., 27 (1974), 45-52. [J] J. C. Jantzen, Über das Dekompositionsverhalten gewisser modularer Darstellungen halbeinfacher Gruppen und ihrer Lie-Algebren, J. Algebra, 49 (1977), 441-469, Satz 1. [P1] R. Parthasarathy, Quantum analogues of a coherent family of modules at roots of unity: A2, B2, In Current Trends in Mathematics and Physics- A Tribute to Harish-Chandra, (ed. S. D. Adhikari), Narosa, New Delhi, 1995. (http://e-math.ams.org/web/preprints/17/199410/199410-17-001/199410-17-001.ps) [P2] R. Parthasarathy, Quantum analogues of a coherent family of modules at roots of unity: A3 (preprint). [V] D. -N. Verma, The role of affine Weyl groups in the representation theory of algebraic Chevalley groups and their Lie algebras, In Lie Groups and Their Representations, Proc. Budapest 1971, (ed. I. M. Gel'fand), pp. 653-705. [Vo] D. A. Vogan, Representations of Real Reductive Groups, Birkhäuser, Boston, 1981.