訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) R.A. Alo and H.L. Shapiro, Normal topological spaces, Cambridge Univ. Press, 1974. 2) S.A. Bogatyi, Approximative and fundamental retracts, Math. USSR Sbornik, 22, 1 (1974), 91-103. 3) K. Borsuk, Theory of shape, Monografie Matematyczne, 59 (PWN, Warsaw, 1975). 4) Z. Cerin, Homotopy properties of locally compact spaces at infinity-calmness and smoothness, Pacific J. Math., 79, 1 (1978), 69-91. 5) Z. Cerin, Shape theory intrinsically, Publications Matemàtiques, 37 (1993), 317-334. 6) A. Dold, Lectures in algebraic topology, Springer-Verlag, Berlin, 1972. 7) J. Dydak and J. Segal, Shape theory: An Introduction, Lecture Notes in Math., 688 (Springer-Verlag, Berlin, 1978). 8) D.A. Edwards and R. Geoghegan, Compact weak equivalent to ANR's, Fund. Math., 90 (1975), 115-124. 9) D.A. Edwards and R. Geoghegan, Infinite-dimensional Whitehead and Vietoris theorems in shape and pro-homotopy, Trans. Amer. Math. Soc., 219 (1976), 351-360. 10) R. Geoghegan, Elementary proofs of stability theorems in pro-homotopy and shape, Gen. Top. Appl., 8 (1978), 265-281. 11) H. Kato, Refinable maps in the theory of shape, Fund. Math., 113 (1981), 119-129. 12) H. Kato, A remark on refinable maps and calmness, Proc. Amer. Math. Soc., 90, 4 (1984), 649-652. 13) A. Koyama, Refinable maps in dimension theory, Topology and its Appl., 17 (1984), 247-255. 14) K. Morita, The Hurewicz and the Whitehead theorems in shape theory, Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A, 12 (1974), 246-258. 15) M.A. Morón and F.R. Ruiz del Portal, Shape as a Cantor completion process, Math. Zeitschrift, 225, 1, (1997), 67-86. 16) M.A. Morón and F.R. Ruiz del Portal, A topology on the set of shape morphisms, preprint. 17) M.A. Morón and F.R. Ruiz del Portal, Counting shape and homotopy types among FANR's: An elementary approach, Manuscripta Math., 79 (1993), 411-414. 18) M.A. Morón and F.R. Ruiz del Portal, Ultrametrics and infinite-dimensional Whitehead theorems in shape theory, Manuscripta Math., 89 (1996), 325-333. 19) M.A. Morón and F.R. Ruiz del Portal, Multivalued maps and shape for paracompacta, Math. Japonica, 39, 3 (1994), 489-500. 20) S. Mardešic and J. Segal, Shape theory, North-Holland, Amsterdam, 1982. 21) R.H. Overton and J. Segal, A new construction of movable compacta, Glasnik Mat., 6 (1971), 361-363. 22) J.M.R. Sanjurjo, An intrinsic description of shape, Trans. Amer. Math. Soc., 329 (1992), 625-636. 23) W.H. Schikof, Ultrametric calculus: An introduction to p-adic analysis, Cambridge University Press, 1984. 24) E. Spanier, Algebraic Topology, McGraw-Hill, NY, 1966. 25) S. Spiez, A majorant for the class of movable compacta, Bull. Acad. Polon, Sci. Ser. Sci. Math. Astron. Phys., 21 (1973). 27) J.L. Taylor, A counterexample in shape theory, Bull. Amer. Math. Soc., 81, 3 (1975), 629-632. 27) K. Tsuda, On AWNR-spaces in shape theory, Math. Japonica, 22, 4 (1977), 471-478.
Right : [1] R. A. Alo and H. L. Shapiro, Normal topological spaces, Cambridge Univ. Press, 1974. [2] S. A. Bogatyi, Approximative and fundamental retracts, Math. USSR Sbornik, 22, 1 (1974), 91-103. [3] K. Borsuk, Theory of shape, Monografie Matematyczne, 59 (PWN, Warsaw, 1975). [4] Z. Cerin, Homotopy properties of locally compact spaces at infinity-calmness and smoothness, Pacific J. Math., 79, 1 (1978), 69-91. [5] Z. Cerin, Shape theory intrinsically, Publications Matemàtiques, 37 (1993), 317-334. [6] A. Dold, Lectures in algebraic topology, Springer-Verlag, Berlin, 1972. [7] J. Dydak and J. Segal, Shape theory: An Introduction, Lecture Notes in Math., 688 (Springer-Verlag, Berlin, 1978). [8] D. A. Edwards and R. Geoghegan, Compact weak equivalent to ANR's, Fund. Math., 90 (1975), 115-124. [9] D. A. Edwards and R. Geoghegan, Infinite-dimensional Whitehead and Vietoris theorems in shape and pro-homotopy, Trans. Amer. Math. Soc., 219 (1976), 351-360. [10] R. Geoghegan, Elementary proofs of stability theorems in pro-homotopy and shape, Gen. Top. Appl., 8 (1978), 265-281. [11] H. Kato, Refinable maps in the theory of shape, Fund. Math., 113 (1981), 119-129. [12] H. Kato, A remark on refinable maps and calmness, Proc. Amer. Math. Soc., 90, 4 (1984), 649-652. [13] A. Koyama, Refinable maps in dimension theory, Topology and its Appl., 17 (1984), 247-255. [14] K. Morita, The Hurewicz and the Whitehead theorems in shape theory, Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A, 12 (1974), 246-258. [15] M. A. Morón and F. R. Ruiz del Portal, Shape as a Cantor completion process, Math. Zeitschrift, 225, 1, (1997), 67-86. [16] M. A. Morón and F. R. Ruiz del Portal, A topology on the set of shape morphisms, preprint. [17] M. A. Morón and F. R. Ruiz del Portal, Counting shape and homotopy types among FANR's: An elementary approach, Manuscripta Math., 79 (1993), 411-414. [18] M. A. Morón and F. R. Ruiz del Portal, Ultrametrics and infinite-dimensional Whitehead theorems in shape theory, Manuscripta Math., 89 (1996), 325-333. [19] M. A. Morón and F. R. Ruiz del Portal, Multivalued maps and shape for paracompacta, Math. Japonica, 39, 3 (1994), 489-500. [20] S. Mardešic and J. Segal, Shape theory, North-Holland, Amsterdam, 1982. [21] R. H. Overton and J. Segal, A new construction of movable compacta, Glasnik Mat., 6 (1971), 361-363. [22] J. M. R. Sanjurjo, An intrinsic description of shape, Trans. Amer. Math. Soc., 329 (1992), 625-636. [23] W. H. Schikof, Ultrametric calculus: An introduction to p-adic analysis, Cambridge University Press, 1984. [24] E. Spanier, Algebraic Topology, McGraw-Hill, NY, 1966. [25] S. Spiez, A majorant for the class of movable compacta, Bull. Acad. Polon, Sci. Ser. Sci. Math. Astron. Phys., 21 (1973). [27] J. L. Taylor, A counterexample in shape theory, Bull. Amer. Math. Soc., 81, 3 (1975), 629-632. [27] K. Tsuda, On AWNR-spaces in shape theory, Math. Japonica, 22, 4 (1977), 471-478.