Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
The Penrose transform for Sp(n, \bm{R}) and singular unitary representations
Hideko SEKIGUCHI
著者情報
ジャーナル フリー

2002 年 54 巻 1 号 p. 215-253

詳細
抄録
We give a general definition of the Radon-Penrose transform for a Zuckerman-Vogan derived functor module of a reductive Lie group G, which maps from the Dolbeault cohomology group over a pseudo-Kähler homogeneous manifold into the space of smooth sections of a vector bundle over a Riemannian symmetric space. Furthermore, we formulate a functorial property between two Penrose trans-forms in the context of the Kobayashi theory of discretely decomposable restrictions of unitary representations.
Based on this general theory, we study the Penrose transform for a family of sin-gular unitary representations of Sp(n, \bm{R}) in details. We prove that the image of the Penrose transform is exactly the space of global holomorphic solutions of the system of partial differential equations of minor determinant type of odd degree over the bounded symmetric domain of type CI, which is biholomorphic to the Siegel upper half space. This system might be regarded as a generalization of the Gauss-Aomoto-Gelfand hy-pergeometric differential equations to higher order. We also find a new phenomenon that the kernel of the Penrose transform is non-zero, which we determine explicitly by means of representation theory.
著者関連情報

この記事は最新の被引用情報を取得できません。

© The Mathematical Society of Japan
前の記事
feedback
Top