Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Lp- Lq estimates for damped wave equations and their applications to semi-linear problem
Takashi NARAZAKI
著者情報
ジャーナル フリー

2004 年 56 巻 2 号 p. 585-626

詳細
抄録
In this paper we study the Cauchy problem to the linear damped wave equation utt-Δ u+2aut=0 in (0, ∞)× \bm{R}n (n≥q 2). It has been asserted that the above equation has the diffusive structure as t→∞. We give the precise interpolation of the diffusive structure, which is shown by L^{p-}Lq estimates. We apply the above L^{p-}Lq estimates to the Cauchy problem for the semilinear damped wave equation utt-Δ u+ 2aut=|u|σu in (0, ∞)× \bm{R}n (2≤ n≤ 5). If the power σ is larger than the critical exponent 2/n (Fujita critical exponent) and it satisfies σ≤ 2/(n-2) when n≥q 3, then the time global existence of small solution is proved, and the decay estimates of several norms of the solution are derived.
著者関連情報

この記事は最新の被引用情報を取得できません。

© The Mathematical Society of Japan
前の記事 次の記事
feedback
Top