Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
The simplest quartic fields with ideal class groups of exponents less than or equal to 2
Stéphane R. LOUBOUTIN
著者情報
ジャーナル フリー

2004 年 56 巻 3 号 p. 717-727

詳細
抄録
The simplest quartic fields are the real cyclic quartic number fields defined by the irreducible quartic polynomials x4-mx3-6x2+mx+1, where m runs over the positive rational integers such that the odd part of m2+16 is squarefree. We give an explicit lower bound for their class numbers which is much better than the previous known ones obtained by A. Lazarus. Then, using it, we determine the simplest quartic fields with ideal class groups of exponents ≤ 2.
著者関連情報

この記事は最新の被引用情報を取得できません。

© The Mathematical Society of Japan
前の記事 次の記事
feedback
Top