抄録
This study presents a steady state and transient solution for a finite width two-lobe bearing operating with a non-Newtonian lubricant, obeying the power law model. A non-linear time-transient analysis is carried out and the orbital stability of journal is ensured by solving the equation of motion by fourth order Runge-Kutta method. Using the expressions for eccentricity ratio of lower and upper lobes and film thickness for each lobe, the modified Reynolds equation is solved separately for each lobe by finite difference technique with a successive over-relaxation scheme. Performance parameters of two-lobe bearing like load carrying capacity, Sommerfeld number, attitude angle; flow and friction parameter are determined and compared with the established results for Newtonian lubricants. Stability parameters are compared with circular bearings. It is found that the non-Newtonian effects are very prominent in the determination of load capacity, flow and friction characteristics of two-lobe bearings. Stability parameters of two-lobe bearings are considerably higher for all eccentricity ratios compared to circular bearings; hence these bearings are better suited for applications where whirl instability limits the speed at which the bearing can be operated.