Journal of Mineralogical and Petrological Sciences
Online ISSN : 1349-3825
Print ISSN : 1345-6296
ISSN-L : 1345-6296
LETTERS
Elastic wave velocities and Raman shift of MORB glass at high pressures
Yoshio KONOHiroaki OHFUJIYuji HIGOAkihiro YAMADAToru INOUETetsuo IRIFUNEKen-ichi FUNAKOSHI
Author information
JOURNAL FREE ACCESS

2008 Volume 103 Issue 2 Pages 126-130

Details
Abstract

The elastic wave velocities of MORB glass were measured up to 18.7 GPa at 27 °C using an ultrasonic technique combined with in situ high-pressure X-ray diffraction and imaging. High-pressure Raman spectroscopy using a diamond anvil cell was also employed to study the local structure of the glass sample up to 20 GPa. Both the elastic wave velocities and Raman frequency at ∼ 1600 cm-1 show significant changes in their pressure dependences at ∼ 10 GPa. The pressure derivatives of the P-wave and bulk sound velocities gradually increase with pressure above ∼ 10 GPa, whereas the S-wave velocity is almost constant below 10 GPa, above which it increases significantly. The plot of apparent change in the Raman frequency shift versus pressure suggests that these notable changes in elastic properties may be attributed to the local structural changes in the MORB glass. Our observations demonstrate that both the density and adiabatic bulk modulus of the MORB glass increase continuously at pressures above ∼ 10 GPa. These apparently conflicting tendencies can be reasonably explained if the zero-pressure density is increased continuously above ∼ 10 GPa accompanied by structural modification. Since the fundamental structure of silicate glass is analogous to that of melt, the results are important and aid in understanding the elastic properties of silicate melt at high pressures.

Content from these authors
© 2008 Japan Association of Mineralogical Sciences
Previous article Next article
feedback
Top