Journal of Mineralogical and Petrological Sciences
Online ISSN : 1349-3825
Print ISSN : 1345-6296
ISSN-L : 1345-6296
LETTERS
Cation distribution in Mg–Zn olivine solid solution: a 29Si MAS NMR and first–principles calculation study
Masami KANZAKI Xianyu XUE
Author information
JOURNAL FREE ACCESS

2016 Volume 111 Issue 4 Pages 292-296

Details
Abstract

In order to clarify cation distributions in the M1 and M2 sites of (Mg,Zn)2SiO4 olivine solid solution, 29Si MAS NMR spectroscopic measurement and first–principles NMR parameter calculation were conducted. The 29Si MAS NMR spectra of (Mg0.95Zn0.05)2SiO4 and (Mg0.90Zn0.10)2SiO4 olivine samples reveled three new peaks at relative chemical shift differences of 0.2, 1.1 and 2.3 ppm from the main peak of forsterite (−61.8 ppm). These shifts can be attributed to changes in the second–nearest–neighbors of Si due to substitution of Mg by Zn. Based on first–principles calculations, these peaks can be assigned to the following three groups of local Si environments in the order of increasing shift from the main peak of forsterite: i) Si tetrahedra with one corner–shared Zn in M1 or M2 octahedron, ii) Si tetrahedra with one edge–shared Zn in M2 octahedron, and iii) Si tetrahedra with one edge–shared Zn in M1 octahedron. Since the last two peaks are well separated from the others, the relative abundances of Zn in the M1 and M2 sites can be quantified using these peaks. Preference of Zn for M1 site over M2 site was inferred from the observed peak intensities. The present study demonstrated the usefulness of 29Si MAS NMR spectroscopy for quantitatively studying cation distributions in solid solutions.

Content from these authors
© 2016 Japan Association of Mineralogical Sciences
Previous article Next article
feedback
Top