Journal of Mineralogical and Petrological Sciences
Online ISSN : 1349-3825
Print ISSN : 1345-6296
ISSN-L : 1345-6296
LETTERS
Self–diffusion of water molecules confined between quartz surfaces at elevated temperatures by molecular dynamics simulations
Satoru ISHIKAWA Hiroshi SAKUMANoriyoshi TSUCHIYA
Author information
JOURNAL FREE ACCESS

2016 Volume 111 Issue 4 Pages 297-302

Details
Abstract

Molecular dynamics (MD) simulations were performed to investigate the self–diffusion coefficients and density profiles of water confined between quartz (1010) surfaces at 298–573 K. The self–diffusion coefficient of water near the surface was lower than that of water far from the surface. The density profiles of H2O molecules showed several layered structures near the surface. In the thickness of 4.8 nm of H2O at 298 K, the thickness of layered structure was estimate to be 1.0 nm, and the self–diffusion coefficient was reduced in 1.0 nm distance from the surface. At 573 K, the thickness of reducing area could be larger than the thickness of layered structure of 1.5 nm. Even in higher temperature conditions such as 573 K, the self–diffusion coefficient of water near the surface was reduced.

Content from these authors
© 2016 Japan Association of Mineralogical Sciences
Previous article Next article
feedback
Top