Journal of Mineralogical and Petrological Sciences
Online ISSN : 1349-3825
Print ISSN : 1345-6296
ISSN-L : 1345-6296
ORIGINAL ARTICLES
High–temperature Raman spectroscopic study of CO2–containing melanophlogite
Masami KANZAKI
Author information
JOURNAL FREE ACCESS

2019 Volume 114 Issue 3 Pages 122-129

Details
Abstract

CO2–containing melanophlogite from Fortunillo, Italy was studied using a micro–Raman spectrometer with the ability to measure the low–frequency region. A very intense and broad feature was found below 100 cm−1. To clarify the origin of this feature in relation with CO2, heat treatment experiments and in–situ high–temperature Raman measurements were conducted up to 1100 °C. As a result of the heat treatment experiments, nearly CO2–free melanophlogite was obtained at 950 °C for 6 h. For shorter time duration or lower treatment temperature, CO2 vibrational Raman peaks (Fermi diad) were still observed, and those peaks were split. The low–frequency feature also reduced its intensity in these degassed samples. For the in–situ study, the intensity of CO2 Raman peaks started to drop at around 450 °C, and simultaneously the low–frequency feature intensity decreased. The splitting of the CO2 Raman peaks started from 450 °C, and it was interpreted as redistribution of CO2 molecules in two distinct cages in the structure. The low–frequency feature completely disappeared at 1100 °C. It was concluded that the low–frequency feature is originated from CO2 molecules. Librational and translational modes of CO2 molecules in the cages of melanophlogite would be responsible for the low–frequency feature. The high–temperature Raman spectroscopic study thus provides us insight into CO2 diffusion in melanophlogite structure.

Content from these authors
© 2019 Japan Association of Mineralogical Sciences
Previous article Next article
feedback
Top