会議名: The 10th International Conference on Modeling and Diagnostics for Advanced Engine Systems (COMODIA 2022)
開催日: 2022/07/05 - 2022/07/08
Accurate and computational cost-effective modeling tools for the optimization of processes and devices of all kinds are needed in nearly all scientific fields. While experimental optimization entails high expenses in terms of cost and time virtual optimization may be a promising alternative. In this work, the suitability and accuracy of a 1D heterogeneous catalytic model is investigated. First, the influence of cell discretization and residence time on the convergence in a 1D catalyst model are investigated. Second, the catalyst model is investigated and validated with use of a stoichiometric steady state three-way catalyst experiment. With the help of these investigations the reaction mechanism is further developed and new reaction rates for two reactions are presented. The modeling results are compared to a 2D simulation approach in terms of computational time and catalyst conversion behavior. The presented model is capable to capture the experimental results with a drastically reduced computational time in comparison to the 2D simulation presented in literature.