2021 Volume 99 Issue 1 Pages 67-77
Accurate estimation of snowfall rate during snowstorms is crucial. This estimate directly impacts the hydrological and atmospheric models. The snow density plays a very important role in estimating the snowfall rate. In this paper, the snow density is investigated during a huge snowstorm event during the International Collaborative Experiment held during the Pyeongchang 2018 Olympics and Paralympic winter games (ICE-POP 2018). The density is calculated using the terminal velocities and diameters of the snow particles measured by a disdrometer. In this study, we used not only radar reflectivity factor (Z) for snowfall rate (S) estimation, but also dual-frequency ratio (DFR). We derived S-Z and S-Z-DFR relations for snowfall estimation during this snowstorm event after considering the snow density. The comparisons are performed between the National Aeronautics and Space Administration dual-frequency dual-polarization Doppler radar and precipitation gauges using these two power–law relations. The results show that the two relations for snowfall rate estimation agree well with gauges, but the S-Z-DFR method performs the best, which has a lower normalized standard error. The error in the snowfall rate estimates decreases as the time scale becomes large. This shows that the S-Z-DFR algorithm is a promising way for snowfall quantitative precipitation estimation and can be used as a ground validation tool for global precipitation measurement snowfall production evaluations.