Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165

This article has now been updated. Please use the final version.

Refinement of the Use of Inhomogeneous Background Error Covariance Estimated from Historical Forecast Error Samples and its Impact on Short-Term Regional Numerical Weather Prediction
Yaodeng CHENJia WANGYufang GAOXiaomeng CHENHongli WANGXiang-Yu HUANG
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 2018-048

Details
Abstract

 Background error covariance (BEC) is one of the key components in the data assimilation systems for numerical weather prediction. Recently, a scheme of using an inhomogeneous and anisotropic BEC estimated from historical forecast error samples has been tested by employing the extended alpha control variable approach (BEC-CVA) in the framework of the Variational Data Assimilation system for the Weather Research and Forecasting model (WRFDA). In this paper, the BEC-CVA approach is further examined by conducting single observation assimilation experiments and continuously cycling data assimilation and forecasting experiments covering a 3-weeks period. Moreover, additional benefits of using a blending approach (BEC-BLD), which combines a static, homogeneous BEC with an inhomogeneous and anisotropic BEC, are also assessed.

 Single observation experiments indicate that the noises in the increments in BEC-CVA can be somehow reduced by using BEC-BLD, while the inhomogeneous and multivariable correlations from the BEC-CVA are still taken into account. The impact of BEC-CVA and BEC-BLD on short-term weather forecasts is compared with three-dimensional variational data assimilation scheme (3DVar), and compared with the hybrid ensemble transform Kalman filter and 3DVar (ETKF-3DVar) in WRFDA also. Results show that the BEC-CVA and BEC-BLD outperform the use of 3DVar. It is shown that BEC-CVA and BEC-BLD underperform ETKF-3DVar as expected, however the computational cost of BEC-CVA and BEC-BLD is considerably less expensive since no ensemble forecasts are required.

Content from these authors
© 2018 The Author(s) CC-BY 4.0 (Before 2018: Copyright © Meteorological Society of Japan)
feedback
Top