気象集誌. 第2輯
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

The Effects of an Upper-Tropospheric Trough on the Heavy Rainfall Event in July 2018 over Japan
YOKOYAMA ChieTSUJI HirokiTAKAYABU Yukari N.
著者情報
ジャーナル フリー 早期公開

論文ID: 2020-013

この記事には本公開記事があります。
詳細
抄録

 In this study, we examined the characteristics of a rainfall system that brought heavy rainfall to a broad portion of western Japan on July 5-8, 2018 and the role played by an upper-tropospheric trough which stayed to the rear of the extensive rainfall area during the event. The Dual-frequency Precipitation Radar onboard the core satellite of the Global Precipitation Measurement revealed the significant contribution of rainfall with its top below 10 km, the broad spatial extent covered by stratiform rainfall, and the presence of convective rainfall embedded in the large stratiform rainfall area. These features are characteristic of well-organized rainfall systems. Based on the analysis of meteorological data, large-scale environmental conditions related to the event were found to be relatively stable and very humid throughout most of the troposphere, compared to the climatology. This large-scale environment, which is consistent with previous statistical results for extreme rainfall events, was present across an extensive area of Japan.

 We found that the trough played an important role in maintaining an environment favorable for the organization of rainfall. Dynamical ascent associated with the trough acted to produce vertical moisture flux convergence in the mid-troposphere and upper troposphere, and moistened most of the troposphere in conjunction with horizontal moisture flux convergence. Humid conditions in the mid- to lower troposphere enhanced the development of deep convection when the lower troposphere was convectively unstable. Once deep convection was promoted in this way, convection itself could moisten the mid- to upper troposphere further through diabatic ascent, thereby loading the free troposphere with moisture. This synergy between the dynamical effect and the diabatic effect enhanced the conditions that allowed for a well-organized rainfall system that produced very heavy rainfall over a large portion of Japan.

著者関連情報
© The Author(s) 2020. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
feedback
Top