気象集誌. 第2輯
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165
Genesis and Maintenance Processes of a Quasi-Stationary Convective Band that Produced Record-Breaking Precipitation in Northern Kyushu, Japan on 5 July 2017
KAWANO TetsuyaKAWAMURA Ryuichi
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: 2020-033

この記事には本公開記事があります。
詳細
抄録

 A quasi-stationary convective band that persisted for approximately ten hours caused precipitation in the northern part of Kyushu Island, Japan on 5 July 2017. The extreme amount of rainfall produced by this convective band caused a number of landslides and flash floods and resulted in a severe disaster. The Weather and Research and Forecasting (WRF) model was used to perform numerical simulations and to clarify the genesis and maintenance processes of the convective band. A full-physics WRF simulation successfully reproduced the observed features of the convective band and extreme precipitation. It is shown that a quasi-stationary convergence zone in the low level played a crucial role in generating and maintaining the convective band. Trajectory and frontogenesis analyses showed that low-level confluent flows due to the blocking effects of a high pressure system located over the Sea of Japan were responsible for the formation, intensification, and sustenance of the convergence zone. Furthermore, the frontal structure of the convergence zone was intensified due to the land-sea thermal contrast between Kyushu Island and the Tsushima Strait. Two additional experiments, namely a simulation with flattened topography of Kyushu Island and a simulation without considering raindrop evaporation also reproduced the observed band well. These results indicate that topography and a cold pool due to raindrop evaporation played only minor roles in the genesis and maintenance of the convective band.

著者関連情報
© The Author(s) 2020. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
feedback
Top