日本神経回路学会誌
Online ISSN : 1883-0455
Print ISSN : 1340-766X
ISSN-L : 1340-766X
研究論文
競合連想ネットによる距離画像からの平面抽出
黒木 秀一西田 健
著者情報
ジャーナル フリー

2007 年 14 巻 4 号 p. 273-281

詳細
抄録
This paper describes an application of the competitive associative net called CAN2 to plane extraction from range images measured by a laser range scanner (LRS). The CAN2 basically is a neural net for learning efficient piecewise linear approximation of nonlinear functions, and in this application it is utilized for learning piecewise planner (linear) surfaces from the range image. As a result of the learning, the obtained piecewise planner surfaces are more precise than the actual planner surfaces, so that we introduce a method to gather piecewise planner surfaces for reconstructing the actual planner surfaces. We apply this method to the real range image, and examine the effectiveness by means of comparing other methods, such as the USF (University of South Florida) method and a RHT (Randomized Hough Transform) based method.
著者関連情報
© 2007 日本神経回路学会
前の記事 次の記事
feedback
Top