Journal of Nutritional Science and Vitaminology
Online ISSN : 1881-7742
Print ISSN : 0301-4800
ISSN-L : 0301-4800
Review
β-Glucan in Foods and Its Physiological Functions
Ayaka NAKASHIMAKoji YAMADAOsamu IWATARyota SUGIMOTOKohei ATSUJITaro OGAWANaoko ISHIBASHI-OHGOKengo SUZUKI
Author information
JOURNAL FREE ACCESS

2018 Volume 64 Issue 1 Pages 8-17

Details
Abstract

β-Glucans are a class of polysaccharides consisting of D-glucose units that are polymerized primarily via the β-1,3 glycosidic bonds, in addition to the β-1,4 and/or β-1,6 bonds. They are present in various food products such as cereals, mushrooms, and seaweeds and are known for their numerous effects on the human body, depending on their structures, which are diverse. The major physicochemical properties of β-glucans include their antioxidant property, which is responsible for the scavenging of reactive oxygen species, and their role as dietary fiber for preventing the absorption of cholesterol, for promoting egestion, and for producing short-chain fatty acids in the intestine. Dietary β-glucans also exert immunostimulatory and antitumor effects by activation of cells of the mucosal immune system via β-glucan receptors, such as dectin-1. In this review, we elaborate upon the diversity of the structures and functions of β-glucans present in food, along with discussing their proposed mechanisms of action. In addition to the traditional β-glucan-containing foods, recent progress in the commercial mass cultivation and supply of an algal species, Euglena gracilis, as a food material is briefly described. Mass production has enabled consumption of paramylon, a Euglena-specific novel β-glucan source. The biological effects of paramylon are discussed and compared with those of other β-glucans.

Content from these authors
© 2018 by the Center for Academic Publications Japan
Previous article Next article
feedback
Top