Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957
General Subjects
Quantitative Analysis of the Distribution of cis-Eicosenoic Acid Positional Isomers in Marine Fishes from the Indian Ocean
Samanthika SenarathKazuaki YoshinagaToshiharu NagaiAkihiko YoshidaFumiaki BeppuChamila JayasingheChandravathany DevadawsonNaohiro Gotoh
Author information
JOURNAL FREE ACCESS

2017 Volume 66 Issue 2 Pages 187-197

Details
Abstract

This study investigated the occurrence and distribution of cis-eicosenoic acid (c-20:1) positional isomers in fishes from the Indian Ocean and compared to those from the Pacific and Atlantic Ocean. Lipids were extracted from the edible part of the fish and then methylated. The eicosenoic acid methyl ester fraction was separated from total fatty acid methyl esters by reversed-phase HPLC and quantitatively analyzed using a GC-FID fitted with the SLB-IL111 highly polar GC column. c14-20:1 was used as an internal standard. The results indicated that the highest levels of c-20:1 positional isomers were found in fishes from the Pacific Ocean (saury, 166.95±12.4 mg/g of oil), followed by the Atlantic Ocean (capelin, 162.7±3.5 mg/g of oil), and lastly in fishes from the Indian Ocean (goatfish, 34.39 mg/g of oil). With only a few exceptions, the most abundant 20:1 positional isomer found in fishes of the Indian and Atlantic Ocean was the c11-20:1 isomer (>50%) followed by the c13-20:1 isomer (<25%). Unusually, the c7-20:1 isomer was predominantly found in a few fishes such as the tooth ponyfish, longface emperor, and commerson’s sole. The c9, c5, and c15-20:1 isomers were the least occurring in fishes from the Indian and Atlantic Ocean. In contrast, the c9-20:1 isomer was the principal isomer identified in fishes from the Pacific Ocean. The results revealed that the content and distribution of c-20:1 positional isomers varied among fishes in different oceans. The data presented in the current study are the first to report on the distribution of c-20:1 positional isomers in fishes from the Indian Ocean.

Content from these authors
© 2017 by Japan Oil Chemists' Society
Previous article Next article
feedback
Top