Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957
General Subjects
High-resolution Kendrick Mass Defect Analysis of Poly(ethylene oxide)-based Non-ionic Surfactants and Their Degradation Products
Thierry FouquetHaruo ShimadaKatsuyuki MaenoKanako ItoYuka OzekiShinya KitagawaHajime OhtaniHiroaki Sato
Author information
JOURNAL FREE ACCESS
Supplementary material

2017 Volume 66 Issue 9 Pages 1061-1072

Details
Abstract

Matrix assisted laser desorption ionization (MALDI) high-resolution mass spectrometry (HRMS) and the recently introduced high-resolution Kendrick mass defect (HRKMD) analysis are combined to thoroughly characterize non-ionic surfactants made of a poly(ethylene oxide) (PEO) core capped by esters of fatty acids. A PEO monostearate surfactant is first analyzed as a proof of principle of the HRKMD analysis conducted with a fraction of EO as the base unit (EO/X with X being an integer) in lieu of EO for a regular KMD analysis. Data visualization is greatly enhanced and the distributions detected in the MALDI mass spectrum are assigned to a pristine (H, OH)-PEO as well as mono- and di-esterified PEO chains with palmitate and stearate end-groups in HRKMD plots computed with EO/45. The MALDI-HRMS/HRKMD analysis is then successfully applied to the more complex case of ethoxylated hydrogenated castor oil (EHCO) found to contain a large number of hydrogenated ricinoleate moieties (up to 14) in its HRKMD plot computed with EO/43, departing from the expected triglyceride structure. The exhaustiveness of the MALDI-HRMS/HRKMD strategy is validated by comparing the so-obtained fingerprints with results from alternative techniques (electrospray ionization MS, size exclusion and liquid adsorption chromatography, ion mobility spectrometry). Finally, aged non-ionic surfactants formed upon hydrolytic degradation are analyzed by MALDI-HRMS/HRKMD to easily assign the degradation products and infer the associated degradation routes. In addition to the hydrolysis of the ester groups observed for EHCO, chain scissions and new polar end-groups are observed in the HRKMD plot of PEO monostearate arising from a competitive oxidative ageing.

Content from these authors
© 2017 by Japan Oil Chemists' Society
Previous article
feedback
Top