Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957
General Subjects
Effect of Calcination Temperature on Mg-Al Layered Double Hydroxides (LDH) as Promising Catalysts in Oxidative Dehydrogenation of Ethanol to Acetaldehyde
Piriya PinthongPiyasan PraserthdamBunjerd Jongsomjit
Author information
JOURNAL FREE ACCESS

2019 Volume 68 Issue 1 Pages 95-102

Details
Abstract

Oxidative dehydrogenation of ethanol to acetaldehyde over Mg-Al layered double hydroxides (LDH) and their differently calcined derivative catalysts was investigated in this study. The Mg-Al catalysts were synthesized via co-precipitation method and calcined at different temperatures at 450°C, 600°C and 900°C. It revealed that the calcination temperature affected the physicochemical properties and the catalytic activity of these catalysts toward the oxidative dehydrogenation of ethanol. It was found that ethanol conversion increased with increasing reaction temperature from 200 to 400°C, whereas acetaldehyde selectivity decreased. At low reaction temperature (200-300°C), the non-calcined catalyst (Mg-Al-000) showed the highest ethanol conversion, which can be attributed to the hydroxyl groups on surface having acetaldehyde as a major product. The calcination process led to formation of mixed oxide phase in Mg-Al catalysts as proven by the XRD and FT-IR results. The catalyst calcined at 450°C (Mg-Al-450) exhibited the highest basicity as measured by the CO2-TPD with ethanol conversion of 45.8% and acetaldehyde yield of 29.7% at 350°C.

Content from these authors
© 2019 by Japan Oil Chemists' Society
Previous article Next article
feedback
Top