Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957
Biochemistry and Biotechnology
Protective Effect of Nervonic Acid Against 6-Hydroxydopamine-Induced Oxidative Stress in PC-12 Cells
Hiroki UmemotoSaika YasugiShinji TsudaMinoru YodaTakashi IshiguroNaoko KabaTatsuki Itoh
Author information
JOURNAL FREE ACCESS

2021 Volume 70 Issue 1 Pages 95-102

Details
Abstract

Increased oxidative stress in the human brain is observed in neurodegenerative diseases such as Parkinson’s disease (PD) and Alzheimer’s disease (AD), and is considered to be a major cause of progression of these disease states. A very long-chain fatty acid, nervonic acid (NA), is the main fatty acid found in various sphingolipid species in the central nervous system. NA plays an important role in forming the plasma membrane’s lipid bilayer and in maintaining normal myelin function. In this study, we examined the neuroprotective effect of NA against rat pheochromocytoma (PC-12) cells stimulated by 6-hydroxydopamine (6-OHDA), which served as a cell model of PD. PC-12 cells were pre-treated with different concentrations of NA for 48 h then subsequently co-treated with NA and 6-OHDA for 48 h to induce cellular oxidative stress. Cell viability was significantly increased by pre-treatment with a very low concentration of NA. The level of malondialdehyde, a marker of lipid peroxidation, was significantly decreased in NA-treated cells. The expression levels of superoxide dismutases (Mn SOD and Cu/Zn SOD) and γ-glutamylcysteine synthetase (GCLC), responsible for the synthesis of glutathione, were significantly increased, indicating that pre-treatment with NA activated the cellular antioxidant defense system. These results suggest that NA may play a role as a neuroprotective mediator in the brain.

Content from these authors
© 2021 by Japan Oil Chemists' Society
Previous article Next article
feedback
Top