Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957

This article has now been updated. Please use the final version.

Temperature Dependence of the Rheology of Soft Matter on a MHz-oscillating Solid-liquid Interface
Minoru YoshimotoShigeru KurosawaMutsuo Tanaka
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: ess22049

Details
Abstract

The temperature dependence of the resonant length, molecular weight, and rheology (shear viscosity and shear modulus) of chemisorbed soft matter on a solid-liquid interface oscillating at a megahertz frequency was studied using a quartz crystal microbalance. As a form of chemisorbed soft matter, self-assembled monolayers (SAMs) formed from six types of mercapto oligo(ethylene oxide) methyl ethers were used. A systematic analysis using the Voigt model showed that the variation in effective hydrated thickness (sensed mass), which is related to the resonant length, was classified into three types based on the molecular weight. As a result, a 2.2-nm change in the resonant length occurred in the studied temperature range from 10 to 35℃. Moreover, the variation in the effective hydrated thickness was dependent on the shear viscosity and shear modulus of the SAMs. A further investigation revealed that the relationships η1Mn0.13 and μ1Mn0.30 could be estimated regardless of the temperature, where η1 and μ1 are the shear viscosity and shear modulus of the SAM, and Mn is the molecular weight of mercapto oligo(ethylene oxide) methyl ether. As a result, we revealed that the experimental results followed the polymer formula irrespective of temperature.

graphical abstract Fullsize Image
Content from these authors
© 2022 by Japan Oil Chemists' Society

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
feedback
Top