Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957

This article has now been updated. Please use the final version.

An Evaluation of the Physicochemical Properties of Sesame Paste Produced by Ball Milling Compared against Conventional Colloid Milling
Bingkai WangLixia HouMing YangLei JinHuamin LiuXuede Wang
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: ess23178

Details
Abstract

The physicochemical characteristics and general food quality were greatly impacted by milling. In order to investigate the effect of milling technique for physicochemical properties of sesame paste of sesame paste, samples were prepared using ball mill and colloid mill by varying grinding times. The samples prepared by ball milling had the higher moisture contents (0.07% - 0.14%) than colloid milling (p < 0.05), except for colloid milling for one cycle (0.11%). The particle size curves showed the multimodal distributions. Compared to colloid milled samples, ball milled samples have smaller particle sizes and more uniform particle distribution. The L* values of samples prepared by ball milling were higher than colloid milling. The ball mill produced sesame paste with a wider range of hardness and silkier texture, and the samples made by ball milling for 30 min had the highest hardness. And the hardness of both CMS and BMS showed a decreasing trend with increasing grinding time. During ball milling, high-speed cutting and collision caused breakage of disulfide bonds, and the sesame proteins were decomposed to their subunits. In conclusions, ball milling may be an alternative and promising process for the preparation of sesame paste.

graphical abstract Fullsize Image
Content from these authors
© 2024 by Japan Oil Chemists' Society

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
feedback
Top