Journal of Prosthodontic Research
Online ISSN : 1883-9207
Print ISSN : 1883-1958
ISSN-L : 1883-1958
Original articles
In silico nonlinear dynamic finite-element analysis for biaxial flexural strength testing of CAD/CAM materials
Hefei LiSatoshi Yamaguchi Chunwoo LeeErnesto B. Benalcázar-JalkhEstevam A. BonfanteSatoshi Imazato
Author information
JOURNAL OPEN ACCESS
Supplementary material

2024 Volume 68 Issue 3 Pages 474-481

Details
Abstract

Purpose: The aim of this study was to establish and assess the validity of in silico models of biaxial flexural strength (BFS) tests to reflect in vitro physical properties obtained from two commercially available computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic blocks and one CAD/CAM resin composite block.

Methods: In vitro three-point bending and BFS tests were conducted for three CAD/CAM materials (n = 10): Katana Zirconia ST10 (raw material: super-translucent multilayered zirconia, ST10; Kuraray Noritake Dental, Niigata, Japan), Katana Zirconia HT10 (raw material: highly translucent multilayered zirconia, HT10; Kuraray Noritake Dental), and Katana Avencia N (AN; Kuraray Noritake Dental). Densities, flexural moduli, and fracture strains were obtained from the in vitro three-point bending test and used as an input for an in silico nonlinear finite element analysis. The maximum principal stress (MPS) distribution was obtained from an in silico BFS analysis.

Results: The elastic moduli of AN, HT10, and ST10 were 6.513, 40.039, and 32.600 GPa, respectively. The in silico fracture pattern of ST10 observed after the in silico evaluation was similar to the fracture pattern observed after the in vitro testing. The MPS was registered in the center of the tensile surface for all three specimens. The projections of the supporting balls were in the form of a triple asymmetry.

Conclusions: The in silico approach established in this study provided an acceptable reflection of in vitro physical properties, and will be useful to assess biaxial flexural properties of CAD/CAM materials without wastage of materials.

Content from these authors
© 2024 Japan Prosthodontic Society

This is an open-access article distributed under the terms of Creative Commons Attribution-NonCommercial License 4.0 (CC BYNC 4.0), which allows users to distribute and copy the material in any format as long as credit is given to the Japan Prosthodontic Society. It should be noted however, that the material cannot be used for commercial purposes.
https://creativecommons.org/licenses/by-nc/4.0/
Previous article Next article
feedback
Top