Journal of the Physical Society of Japan
Online ISSN : 1347-4073
Print ISSN : 0031-9015
ISSN-L : 0031-9015
Nonlinear Stability of Kolmogorov Flow with Bottom-Friction Using the Energy Method
Hiroaki FukutaYouichi Murakami
著者情報
ジャーナル 認証あり

1995 年 64 巻 10 号 p. 3725-3739

詳細
抄録
Stability of Kolmogorov flow: U=-sin y to any finite disturbances is treated by using the energy method. The linear damping term -λ u due to the bottom friction is taken into account. The Euler-Lagrange equation is solved numerically and analytically to determine the critical Reynolds number, REc, below which subcritical instability cannot occur. It is shown numerically that REc and the linear critical Reynolds number, RLc are of the same order in 0<λ <200. The critical wavenumber, (αEc, , βEc) is always (0, , 0) when λ <49.1; otherwise α Ec≠ 0. By using a small wavenumber expansion, it is obtained that RE= [8λ (λ +1)]1/2 at α=0. In the limit λ → ∞, numerical results suggest that REc→ 2λ and αEc→ ∞. In this limit for general parallel flow U(y) the relation: (2/M)λ EcLc=(1/σ0)λ is obtained analytically where M=maxy, | ∂ U/∂ y|, and σ0 is the inviscid maximum growth rate.
著者関連情報

この記事は最新の被引用情報を取得できません。

© The Physical Society of Japan 1995
前の記事 次の記事
feedback
Top