抄録
Electron transport in a two-dimensional symplectic system with time-dependent perturbations is investigated numerically by the equation of motion method. The effect of time-dependent perturbations on the conductivity is examined in the critical regime as well as in the metallic regime. The universal correction to the conductivity, which is consistent with the weak localization theory, is indeed observed in the metallic regime. In the critical regime, it is found that the dependence of the conductivity on the frequency of perturbations can be described by the one-parameter scaling.