科学哲学
Online ISSN : 1883-6461
Print ISSN : 0289-3428
ISSN-L : 0289-3428
論文
集合論の形成にみる「直観」の問題
―カヴァイエスの立場から―
中村 大介
著者情報
ジャーナル フリー

2012 年 46 巻 1 号 p. 53-68

詳細
抄録
This paper aims to elucidate what intuition is regarded to be in Jean Cavaillès’ philosophy of mathematics, by investigating his study of the emergence of Cantorian set theory. Cavaillès construes the emergence to consist in three steps: first, Georg Cantor invented point-set derivation to solve a problem for analysis; second, he also showed that point-set derivation can produce infinitely ascending derived sets without arriving at any continuum; third, by replacing point-set derivation with two generating principles and a restricting principle, Cantor established the existence of transfinite ordinal numbers. Cavaillès finds a central role of mathematical intuition in the emergence of set theory thus construed.
著者関連情報
© 2012 日本科学哲学会
前の記事 次の記事
feedback
Top