科学哲学
Online ISSN : 1883-6461
Print ISSN : 0289-3428
ISSN-L : 0289-3428
石本基金若手研究助成成果報告書
1階算術に対するゲンツェンの1935年版無矛盾性証明がもつ哲学的意義
―含意を巡る循環との関わりにおいて―
高橋 優太
著者情報
ジャーナル フリー

2016 年 49 巻 1 号 p. 49-66

詳細
抄録

    Gentzen remarked that one of the aims of his 1935/36 consistency proofs for first-order arithmetic was to give a “finitist” interpretation for the implication-formulas in first-order arithmetic. He imposed the following requirement on such an interpretation: a “finitist” interpretation for the implication-formulas must be able to avoid the circularity of implication that was urged by himself. However, Gentzen did not present his “finitist” interpretation explicitly. Moreover, he gave no argument for its non-circularity. In this paper, first we formulate an interpretation for the implication-formulas in first-order arithmetic by using Gentzen’s 1935 consistency proof. Next, we argue that this interpretation avoids the circularity urged by Gentzen.

著者関連情報
© 2016 日本科学哲学会
前の記事 次の記事
feedback
Top