Journal of Reproduction and Development
Online ISSN : 1348-4400
Print ISSN : 0916-8818
ISSN-L : 0916-8818
Original Article
Effect of hypoxia on progesterone production by cultured bovine early and mid luteal cells
Hiroki HASEGAWARyo NISHIMURAMasamichi YAMASHITATakeshi YAMAGUCHIMitsugu HISHINUMAKiyoshi OKUDA
Author information
JOURNAL FREE ACCESS

2019 Volume 65 Issue 1 Pages 67-72

Details
Abstract

A major role of the corpus luteum (CL) is to produce progesterone (P4). The CL has immature vasculature shortly after ovulation, suggesting it exists under hypoxic conditions. To elucidate the mechanism involved in regulation of luteal cell function during CL development, we compared the effect of hypoxia on P4 production by cultured bovine early and mid luteal cells. Luteal cells obtained from early and mid CL were incubated under different O2 concentrations (20% and 3%) with or without hCG (1 U/ml) for 6 h and 24 h. After 6 h of culture in the presence of hCG, P4 production was not affected by hypoxia whereas decrease in its production by mid luteal cells was observed. After 24 h of culture, P4 production was significantly decreased by hypoxia in both stages of luteal cells regardless of the use of hCG. At 6 h of culture, hypoxia increased mRNA expression of hydroxyl-Δ-5-steroid dehydrogenase, 3β- and steroid Δ-isomerase 1 (HSD3B1) in early luteal cells, and decreased mRNA expression of cytochrome P450 cholesterol side chain cleavage (CYP11A1) enzyme in mid luteal cells. At 24 h of culture, mRNA expressions of steroidogenic acute regulatory protein (STAR), CYP11A1, and HSD3B1 were not affected by hypoxia in both stages of luteal cells. The overall results suggest that early luteal cells maintain P4 production under hypoxic conditions, and hypoxia-induced HSD3B1 may support this P4 production in the bovine early CL.

Fullsize Image
Content from these authors
© 2019 Society for Reproduction and Development

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top