Journal of Reproduction and Development
Online ISSN : 1348-4400
Print ISSN : 0916-8818
ISSN-L : 0916-8818
Original Article
Early production of offspring by in vitro fertilization using first-wave spermatozoa from prepubertal male mice
Keiji MOCHIDAAyumi HASEGAWANarumi OGONUKIKimiko INOUEAtsuo OGURA
Author information
JOURNAL FREE ACCESS

2019 Volume 65 Issue 5 Pages 467-473

Details
Abstract

Mature male mice (aged 10–12 weeks or older) are conventionally used for in vitro fertilization (IVF) in order to achieve high fertilization rates (e.g., > 70%). Here, we sought to determine the earliest age at which male mice (C57BL/6J strain) can be used efficiently for producing offspring via IVF. Because we noted that the addition of reduced glutathione (GSH) to the IVF medium significantly increased the fertilizing ability of spermatozoa from prepubertal males, we used this IVF protocol for all experiments. Spermatozoa first reached the caudal region of the epididymides at day 35; however, they were unable to fertilize oocytes. Caudal epididymal spermatozoa first became competent for oocyte fertilization at day 37, albeit at a low rate (2.9%). A high fertilization rate (72.0%) was obtained at day 40, and 52.4% of the embryos thus obtained developed into offspring after embryo transfer. Moreover, we found that corpus epididymal spermatozoa in prepubertal mice could fertilize oocytes; however, the fertilization rates were always < 50%, regardless of the age of the males. Caput epididymal spermatozoa failed to fertilize oocytes irrespective of the age of the males. Therefore, we propose that caudal epididymal spermatozoa from male mice aged 40 days can be efficiently used for IVF, to obtain offspring in the shortest attainable time. This protocol will reduce the turnover time required for the generation of mice by ~1 month compared with that of the conventional IVF protocol.

Fullsize Image
Content from these authors
© 2019 Society for Reproduction and Development

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top