Journal of Reproduction and Development
Online ISSN : 1348-4400
Print ISSN : 0916-8818
ISSN-L : 0916-8818
Current issue
Showing 1-12 articles out of 12 articles from the selected issue
SRD Innovative Technology Award 2018
  • Osamu DOCHI
    Type: SRD Innovative Technology Award 2018
    2019 Volume 65 Issue 5 Pages 389-396
    Published: 2019
    Released: October 23, 2019
    [Advance publication] Released: June 13, 2019
    JOURNALS FREE ACCESS

    Embryo transfer entails many procedures and techniques, of which embryo freezing is an important component in bovine embryo transfer. Embryo freezing techniques have been developed over the last 40 years, allowing practical availability, and have become essential for cattle reproduction management under field conditions. The direct transfer methods of frozen-thawed, in vivo-derived, and in vitro-produced (IVF) bovine embryos using 1.5 M ethylene glycol (EG) with or without sucrose (SUC) are used widely under on-farm conditions, not only in Japan but also globally. The direct transfer method using 1.5 M glycerol (GLY) and 0.25 M SUC (GLY-SUC) is used mainly in Japan. The pregnancy rate with direct transfer of frozen-thawed bovine embryos in either EG or GLY-SUC has been found to not differ from conventional freezing with GLY and traditional dilution techniques. Pregnancy rates following direct transfer of frozen-thawed bovine embryos were affected by the developmental stage of the embryos and the parity of the recipients. The use of ultrasound-guided on-farm ovum pickup is ushering in a new revolution for the commercial application of IVF embryos. Globally, for the first time more IVF bovine embryos were transferred in 2017 than produced in vivo. More than 60% of IVF embryos were transferred fresh due to a low pregnancy rate of frozen-thawed IVF embryos. Many factors seemed to be involved in improving the survival rate of frozen-thawed IVF embryos. Therefore, further research is needed to improve the freezing tolerance of IVF embryos to develop efficient direct transfer methods analogous to those used for in vivo embryos.

    Download PDF (665K)
Original Article
  • Sutisa MAJARUNE, Pelden Nima, Arisa SUGIMOTO, Mayuko NAGAE, Naoko INOU ...
    Type: Original Article
    2019 Volume 65 Issue 5 Pages 397-406
    Published: 2019
    Released: October 23, 2019
    [Advance publication] Released: May 31, 2019
    JOURNALS FREE ACCESS

    Increasing evidence shows that puberty onset is largely dependent on body weight rather than chronological age. To investigate the mechanism involved in the energetic control of puberty onset, the present study examined effects of chronic food restriction during the prepubertal period and the resumption of ad libitum feeding for 24 and 48 h on estrous cyclicity, Kiss1 (kisspeptin gene), Tac3 (neurokinin B gene) and Pdyn (dynorphin A gene) expression in the hypothalamus, luteinizing hormone (LH) secretion and follicular development in female rats. When animals weighed 75 g, they were subjected to a restricted feeding to retard growth to 70–80 g by 49 days of age. Then, animals were subjected to ad libitum feeding or remained food-restricted. The growth-retarded rats did not show puberty onset associated with suppression of both Kiss1 and Pdyn expression in the arcuate nucleus (ARC). 24-h ad libitum feeding increased tonic LH secretion and the number of Graafian and non-Graafian tertiary follicles with an increase in the numbers of ARC Kiss1- and Pdyn-expressing cells. 48-h ad libitum feeding induced the vaginal proestrus and a surge-like LH increase with an increase in Kiss1-expressing cells in the anteroventral periventricular nucleus (AVPV). These results suggest that the negative energy balance causes pubertal failure with suppression of ARC Kiss1 and Pdyn expression and then subsequent gonadotropin secretion and ovarian function, while the positive energetic cues trigger puberty onset via an increase in ARC Kiss1 and Pdyn expression and thus gonadotropin secretion and follicular development in female rats.

    Download PDF (6169K)
  • Asuka ONUMA, Yoshie A. FUJIOKA, Wataru FUJII, Koji SUGIURA, Kunihiko N ...
    Type: Original Article
    2019 Volume 65 Issue 5 Pages 407-412
    Published: 2019
    Released: October 23, 2019
    [Advance publication] Released: June 16, 2019
    JOURNALS FREE ACCESS

    Exportin 6, which functions specifically in the nuclear export of actin family proteins, has been reported to be absent in immature Xenopus oocytes, which have a huge nucleus containing a large amount of actin. In mammalian oocytes, however, the presence and the function of exportin 6 remain uninvestigated. In this study, we assessed the expression and effects of exportin 6 on meiotic resumption in porcine oocytes after cloning porcine exportin 6 cDNA and carrying out overexpression and expression inhibition by mRNA and antisense RNA injection, respectively. We found for the first time that exportin 6 was expressed in mammalian full-grown germinal-vesicle-stage oocytes and was involved in the nuclear export of actin. In contrast, exportin 6 was absent from the growing oocytes, which are meiotically incompetent and maintain the germinal-vesicle structure in the long term; the regulatory mechanism appeared to be active degradation. We examined the effects of exportin 6 on meiotic resumption of porcine oocytes and noted that its expression did not affect the onset time but increased the rate of germinal vesicle breakdown at 24 h via regulation of the nuclear actin level, which directly influences the physical strength of the germinal-vesicle membrane. Our results suggest that exportin 6 affects the nuclear transport of actin and meiotic resumption in mammalian oocytes.

    Download PDF (1148K)
  • Rui HUA, Lu ZHOU, Haiwen ZHANG, Hui YANG, Wenchuan PENG, Kebang WU
    Type: Original Article
    2019 Volume 65 Issue 5 Pages 413-421
    Published: 2019
    Released: October 23, 2019
    [Advance publication] Released: July 14, 2019
    JOURNALS FREE ACCESS

    The Hainan black goat is a high-quality local goat breed in Hainan Province of China. It is resistant to high temperatures, humidity, and disease. Although the meat of this breed is tender and delicious, its reproductive performance and milk yield are low. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) technology was used to analyze the differentially expressed proteins in the serum of female Hainan black goats during the reproductive cycle (empty pregnant, estrus, gestation, and lactation). The pathway enrichment analysis results showed that most of the differentially expressed proteins between each period belonged to the complement and coagulation cascades. Analysis of the differential protein expression and function revealed seven proteins that were directly associated with reproduction, namely pre-SAA21, ANTXR2, vWF, SFRP3, β4GalT1, pre-IGFBP2 and Ran. This study revealed the changing patterns of differentially expressed proteins in the reproductive cycle of the Hainan black goat. pre-SAA21, ANTXR2, vWF, SFRP3, β4GalT1, pre-IGFBP2, and Ran were identified as candidate proteins for mediating the physiological state of Hainan black goats and regulating their fertility. This study elucidated the changes in expression levels of differentially expressed proteins during the reproductive cycle of Hainan black goats and also provides details about its breeding pattern.

    Download PDF (2588K)
  • Huy-Hoang NGUYEN, Bui Le Quynh NHU, Nguyen Nhat Phuong UYEN, Van-Thuan ...
    Type: Original Article
    2019 Volume 65 Issue 5 Pages 423-432
    Published: 2019
    Released: October 23, 2019
    [Advance publication] Released: August 04, 2019
    JOURNALS FREE ACCESS

    Historically, it had been widely accepted that the female mammalian ovary contained a limited number of oocytes that would reduce over time, without the possibility of replenishment. However, recent studies have suggested that female germline stem cells (FGSCs) could replenish the oocyte-pool in adults. The aim of this study was to isolate FGSCs from porcine ovaries and differentiate them into oocyte-like cells (OLCs). The FGSCs were successfully isolated from porcine ovarian tissue and cultured in vitro, in DMEM/F-12 medium supplemented with growth factors (EGF, FGF, GDNF, etc.) and a supplement (N21). These cells possessed spherical morphology and expressed specific germline characteristics (Vasa, Stella, Oct4, c-kit). By evaluating different conditions for in vitro differentiation of FGSCs, co-culturing the isolated FGSCs with MEF cells, under three-dimensional (3D) cell cultures, were shown to be optimal. FGSCs could successfully be differentiated into OLCs and reached about 70 µm in diameter, with a large number of surrounding somatic cells. Importantly, OLCs contained large nuclei, about 25–30 µm, with filamentous chromatin, similar to oocyte morphology, and expressed oocyte-specific markers (Gdf9, Zp2, SCP3, etc.) at the same level as oocytes. In conclusion, we successfully isolated FGSCs from porcine ovarian tissue and differentiated them into oocyte-like cells. This will provide a valuable model for studying a new, alternative source of oocytes.

    Download PDF (2289K)
  • Helena FULKA, Atsuo OGURA, Pasqualino LOI, Josef FULKA, Jr.
    Type: Original Article
    2019 Volume 65 Issue 5 Pages 433-441
    Published: 2019
    Released: October 23, 2019
    [Advance publication] Released: August 18, 2019
    JOURNALS FREE ACCESS

    Differentiated nuclei can be reprogrammed/remodelled to totipotency after their transfer to enucleated metaphase II (MII) oocytes. The process of reprogramming/remodelling is, however, only partially characterized. It has been shown that the oocyte nucleus (germinal vesicle – GV) components are essential for a successful remodelling of the transferred nucleus by providing the materials for pseudo-nucleus formation. However, the nucleus is a complex structure and exactly what nuclear components are required for a successful nucleus remodelling and reprogramming is unknown. Till date, the only nuclear sub-structure experimentally demonstrated to be essential is the oocyte nucleolus (nucleolus-like body, NLB). In this study, we investigated what other GV components might be necessary for the formation of normal-sized pseudo-pronuclei (PNs). Our results showed that the removal of the GV nuclear envelope with attached chromatin and chromatin-bound factors does not substantially influence the size of the remodelled nuclei in reconstructed cells and that their nuclear envelopes seem to have normal parameters. Rather than the insoluble nuclear lamina, the GV content, which is dissolved in the cytoplasm with the onset of oocyte maturation, influences the characteristics and size of transferred nuclei.

    Editor’s picks

    Cover Story:
    The oocyte is the only cell that can reprogram a somatic nucleus to totipotency. The process of reprogramming is, however, only partially understood, and is accompanied by both epigenetic and structural changes in the somatic nucleus. The oocyte components that are necessary for a successful reprogramming and remodeling are unknown. In this issue, Fulka H et al. demonstrate that rather than the insoluble nuclear envelope, together with chromatin-bound factors, or the cytoplasm alone, it is the soluble nuclear fraction that has a major effect upon the somatic nucleus (Fulka H, et al.: Dissecting the role of the germinal vesicle nuclear envelope and soluble content in the process of somatic cell remodeling and reprogramming. pp. 433-441). This fraction is essential for altering the size of the somatic nucleus as well as transcriptional silencing and efficient histone H3.3 incorporation.

    Download PDF (2122K)
  • Natsumi FUNESHIMA, Tatsuo NOGUCHI, Yuri ONIZAWA, Hikari YAGINUMA, Moto ...
    Type: Original Article
    2019 Volume 65 Issue 5 Pages 443-450
    Published: 2019
    Released: October 23, 2019
    [Advance publication] Released: August 03, 2019
    JOURNALS FREE ACCESS

    Repeat breeding is a reproductive disorder in cattle. Embryo transfer following artificial insemination (AI) improves pregnancy rate by replenishing interferon tau (IFNT), but it results in a notably higher rate of twin occurrence. This study hypothesized that parthenogenetic (PA) embryo transfer following AI (AI + PA) could improve the conception rate because that PA embryo become as a supplemental source of IFNT without twins. PA embryos showed higher IFNT mRNA expression than in vitro fertilization (IVF) embryos. An examination of the effect of the cultured conditioned media (CM) of PA or IVF embryos on Madin-Darby bovine kidney cells with stably introduced promoter-reporter constructs of interferon-stimulated gene 15 (ISG15, marker of IFN response) showed higher stimulation levels of ISG15 promoter activity with PA than with IVF embryo. We investigated in vivo the effect of AI + PA on healthy Japanese Black cattle. Cattle transferred with PA embryo alone were non-fertile, but those that underwent AI + PA showed a pregnancy rate of 53.3%, the similar as that with AI alone (60%). In pregnant cattle in AI + PA group, adding the PA embryo upregulated the expression of ISGs and plasma progesterone concentration. No twin were generated in AI only and AI + PA groups. Using repeat breeding Holstein cows that did not become pregnant with 4–9 times of AI, transfer of PA embryo following AI resulted in a higher pregnancy rate than that of control (AI only). We suggest that AI + PA may be beneficial for improving maternal pregnancy recognition in repeat breeder cattle while avoiding twin generation.

    Download PDF (1032K)
  • Haney SAMIR, Mohamed M.M. KANDIEL, Amal M. Abo EL-MAATY, Manila SEDIQY ...
    Type: Original Article
    2019 Volume 65 Issue 5 Pages 451-457
    Published: 2019
    Released: October 23, 2019
    [Advance publication] Released: August 10, 2019
    JOURNALS FREE ACCESS

    This study aimed at investigating the efficacy of two protocols of estrous synchronization on follicular changes and hemodynamics. Pluriparous Egyptian buffaloes (n = 36) were synchronized either with controlled internal drug release (CIDR)-PGF2α (7-days CIDR insert with PGF2α injected on the 6th day; n = 18) or Ovsynch-CIDR (Ovsynch protocol concurrent with 7-days CIDR insert; n = 18). Blood sampling and ovarian ultrasound examinations (Grayscale, color and power Doppler modes) were conducted on the Day of CIDR removal, estrus, and luteal phase. Mean follicle diameter (MFD), first (1st-LF) and second (2nd-LF) largest follicle diameters, and E2 levels significantly increased in the CIDR-PGF2α group at CIDR withdrawal. Ovsynch-CIDR markedly fortified higher follicle population, MFD, and 1st-LF diameter at estrus and corpus luteum (CL) volume at the luteal phase in concomitant with increases (P < 0.05) in E2 (at estrus) and P4 (at luteal phase). At CIDR removal, the blue pixels in the dominant follicle (DF) were higher (1.5 times; P = 0.054) in the Ovsynch-CIDR than in the CIDR-PGF2α. At estrus, total blood flow (TBF) and power Doppler pixels (PDP) to DF(s) were noticeably higher (seven and 1.6 times; respectively) in the Ovsynch-CIDR than in CIDR-PGF2α (5906 ± 237 vs. 830 ± 60 pixels, P < 0.01 and 5479 ± 322 vs. 3377 ± 19 pixels, P < 0.05; respectively). At the luteal phase, TBF and PDP to the CL increased in the Ovsynch-CIDR group than in the CIDR-PGF2α group (11060 ± 965 vs. 7963 ± 480 pixels, 1.4 times, P = 0.05 and 18900 ± 1350 vs. 13220 ± 568 pixels, 1.1 times, P = 0.005; respectively). In conclusion, based on the improvement in synchronized follicular activity and hemodynamics, the Ovsynch-CIDR regimen is persuaded in Egyptian buffaloes.

    Download PDF (1193K)
  • Lanjie LEI, Junbang GE, Hui ZHAO, Xiangguo WANG, Lei YANG
    Type: Original Article
    2019 Volume 65 Issue 5 Pages 459-465
    Published: 2019
    Released: October 23, 2019
    [Advance publication] Released: August 11, 2019
    JOURNALS FREE ACCESS

    The decrease in the level of estradiol (E2) in granulosa cells caused by lipopolysaccharide (LPS) is one of the major causes of infertility underlying postpartum uterine infections; the precise molecular mechanism of which remains elusive. This study investigated the role of endoplasmic reticulum (ER) stress in LPS-induced E2 decrease in mouse granulosa cells. Our results showed that LPS increased the pro-inflammatory cytokines [(interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α)], activated ER stress marker protein expression [(glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP)], and decreased cytochrome P450 family 19 subfamily A member 1 (Cyp19a1) expression and E2 production. Moreover, inhibition of ER stress by 4-phenylbutyrate (4-PBA) attenuated thapsigargin-(TG, ER stress agonist) or LPS-induced reduction of Cyp19a1 and E2, pro-inflammatory cytokines expression (IL-1β, IL-6, IL-8, and TNF-α), and the expression of CHOP and GRP78. Additionally, inhibition of toll-like receptor 4 (TLR4) by resatorvid (TAK-242) reversed the inhibitory effects of LPS on Cyp19a1 expression and E2 production, activation of GRP78 and CHOP, and expression of IL-1β, IL-6, IL-8, and TNF-α. In summary, our study suggests that ER stress is involved in LPS-inhibited E2 production in mouse granulosa cells.

    Download PDF (1381K)
  • Keiji MOCHIDA, Ayumi HASEGAWA, Narumi OGONUKI, Kimiko INOUE, Atsuo OGU ...
    Type: Original Article
    2019 Volume 65 Issue 5 Pages 467-473
    Published: 2019
    Released: October 23, 2019
    [Advance publication] Released: August 26, 2019
    JOURNALS FREE ACCESS

    Mature male mice (aged 10–12 weeks or older) are conventionally used for in vitro fertilization (IVF) in order to achieve high fertilization rates (e.g., > 70%). Here, we sought to determine the earliest age at which male mice (C57BL/6J strain) can be used efficiently for producing offspring via IVF. Because we noted that the addition of reduced glutathione (GSH) to the IVF medium significantly increased the fertilizing ability of spermatozoa from prepubertal males, we used this IVF protocol for all experiments. Spermatozoa first reached the caudal region of the epididymides at day 35; however, they were unable to fertilize oocytes. Caudal epididymal spermatozoa first became competent for oocyte fertilization at day 37, albeit at a low rate (2.9%). A high fertilization rate (72.0%) was obtained at day 40, and 52.4% of the embryos thus obtained developed into offspring after embryo transfer. Moreover, we found that corpus epididymal spermatozoa in prepubertal mice could fertilize oocytes; however, the fertilization rates were always < 50%, regardless of the age of the males. Caput epididymal spermatozoa failed to fertilize oocytes irrespective of the age of the males. Therefore, we propose that caudal epididymal spermatozoa from male mice aged 40 days can be efficiently used for IVF, to obtain offspring in the shortest attainable time. This protocol will reduce the turnover time required for the generation of mice by ~1 month compared with that of the conventional IVF protocol.

    Download PDF (1500K)
Technology Report
  • Fuminori TANIHARA, Maki HIRATA, Shigeki MORIKAWA, Nhien Thi NGUYEN, Qu ...
    Type: Technology Report
    2019 Volume 65 Issue 5 Pages 475-479
    Published: 2019
    Released: October 23, 2019
    [Advance publication] Released: June 10, 2019
    JOURNALS FREE ACCESS

    The introduction of exogenous molecules into embryos is required for analyses of molecular dynamics and specific gene functions during early embryonic development. Electroporation is an effective method to transport exogenous molecules into cells, but is rarely used in bovine embryos. First, we evaluated the viability of in vivo-derived bovine blastocysts after electroporation with fluorescein (FAM) labeled-oligonucleotides with varying pulse numbers (3, 5, 7, and 10), while keeping the pulse duration at 1 msec and the electric field of 20 V/mm. Next, we examined the effects of zona pellucida status on blastocyst quality after electroporation, by comparing the average diameter of blastocysts before and after electroporation using blastocysts with intact zona pellucida and hatching/hatched blastocysts. Electroporation successfully introduced exogenous molecules into in vivo-derived bovine blastocysts without loss of viability. Moreover, the status of the zona pellucida may be associated with the quality of blastocysts after electroporation.

    Download PDF (1004K)
  • Larasati Puji RAHAYU, Natsumi ENDO, Shinji KUWAI, Shinya OISHI, Tomomi ...
    Type: Technology Report
    2019 Volume 65 Issue 5 Pages 481-484
    Published: 2019
    Released: October 23, 2019
    [Advance publication] Released: August 12, 2019
    JOURNALS FREE ACCESS

    This study aimed to investigate the efficacy of a newly developed NK3 receptor agonist (B21-750) on the secretion of luteinizing hormone (LH) in association with ovarian steroid hormones during the follicular phase (FP, n = 5) and luteal phase (LP, n = 5) of Shiba goats. The FP group was treated with both prostaglandin F and progesterone-controlled internal drug release (CIDR) inserts for 10 d, and B21-750 (200 nmol) was injected 12 h after removing the CIDR. Meanwhile, the LP group received B21-750 injections on a day during the mid-luteal phase. LH secretion increased at 1 h after B21-750 injection in both groups. The percent changes in the area under the curve of LH was higher during the hour after injection than during the hour before injection in both groups. Thus, this study demonstrated that B21-750 induces rapid LH secretion for a short period during both the follicular and luteal phases.

    Download PDF (660K)
feedback
Top