Journal of Robotics, Networking and Artificial Life
Online ISSN : 2352-6386
Print ISSN : 2405-9021
Basic Research on Transfer Learning Indicators for Reinforcement Learning
Satoshi Sugikawa Kenta TakeokaNaoki Kotani
著者情報
ジャーナル オープンアクセス

2023 年 10 巻 3 号 p. 261-265

詳細
抄録
Reinforcement learning requires a lot of time for the agent to learn. Transfer learning methods can be used to shorten this learning time, but they have the disadvantage that it is not known which knowledge is effective in what kind of environment until it is learned. When users transfer knowledge, it is necessary to investigate the relationship between the transfer source and the transfer destination. This study proposes an adaptive criteria evaluation index that can determine this relationship in advance. In the simulation, we confirmed the effectiveness of the proposed method using several problem examples.
著者関連情報
© 2023 ALife Robotics Corporation Ltd.

この記事はクリエイティブ・コモンズ [表示 - 非営利 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc/4.0/deed.ja
前の記事 次の記事
feedback
Top