Journal of Robotics, Networking and Artificial Life
Online ISSN : 2352-6386
Print ISSN : 2405-9021
Attention-guided Low light enhancement CNN Network
Xiwen LiangXiaoning YanNenghua XuXiaoyan Chen Hao Feng
著者情報
ジャーナル オープンアクセス

2023 年 9 巻 4 号 p. 316-320

詳細
抄録
Low illumination image enhancement is a difficult but scientific task. With the image brightness increasing, the noises are amplified, and with the contrast and detail increasing, the false information is generated. To solve this problem, a multi-branch attention network is proposed to process low-light images directly without additional operations. The proposed network is composed with enhancement module (EM) and Convolutional Block Attention Module (CBAM). The attention module can make the CNN network structure gradually focus on the weak light area in the image, and the enhancement module can fully highlight the multi-branch feature graph under the guidance of attention. In this way, the overall quality of the picture will be greatly improved, including contrast, brightness, etc. Through a large number of experiments, our model can produce better visual effects, and also achieve good results in quantitative indicators.
著者関連情報
© 2023 ALife Robotics Corporation Ltd.

この記事はクリエイティブ・コモンズ [表示 - 非営利 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc/4.0/deed.ja
前の記事 次の記事
feedback
Top