Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on AI, Robotics, and Automation in Space
Traversability-Based RRT* for Planetary Rover Path Planning in Rough Terrain with LIDAR Point Cloud Data
Reiya TakemuraGenya Ishigami
著者情報
ジャーナル オープンアクセス

2017 年 29 巻 5 号 p. 838-846

詳細
抄録

Sampling-based searchalgorithms such as Rapidly-Exploring Random Trees (RRT) have been utilized for mobile robot path planning and motion planning in high dimensional continuous spaces. This paper presents a path planning method for a planetary exploration rover in rough terrain. The proposed method exploits the framework of a sampling-based search, the optimal RRT (RRT*) algorithm. The terrain geometry used for planning is composed of point cloud data close to continuous space captured by a light detection and ranging (LIDAR) sensor. During the path planning phase, the proposed RRT* algorithm directly samples a point (node) from the LIDAR point cloud data. The path planner then considers the rough terrain traversability of the rover during the tree expansion process of RRT*. This process improves conventional RRT* in that the generated path is safe and feasible for the rover in rough terrain. In this paper, simulation study on the proposed path planning algorithm in various real terrain data confirms its usefulness.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
前の記事 次の記事
feedback
Top