Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular Papers
Mechanism and Effect of Tread Swing for Lower Limbs Strength Training Device
Takumi TamamotoKen’ichi KoyanagiYoshinori KimuraMaki KoyanagiAkio InoueTomoaki MurabayashiToru OshimaTakuya TsukagoshiKentaro Noda
著者情報
ジャーナル オープンアクセス

2022 年 34 巻 1 号 p. 101-110

詳細
抄録

The aim of this study was to propose a tread swing mechanism for lower-limb strength training devices and to confirm its effects. In the standing position and for training the lower limbs, if the tread-surface angle is inappropriate, the posture of the knee joints gets affected, and knee adduction/valgus moments, which result in knee stress, get generated. The target training exercises are the front-back leg scissors and open-close leg triangle exercises. With regard to the swing of the tread, it is necessary to realize a pitch/yaw rotation and a roll/yaw rotation for the former and the latter exercises, respectively. As a result, knee joint stress can be reduced by moving the center of pressure (COP). The proposed mechanism has a further differential mechanism that utilizes the difference between the pulley diameters. The translational movement force of the tread is transmitted as the torque of the swing motion for the pitch, roll, and yaw through the effects of a differential mechanism. The rate of the swing angle can be changed by adjusting the pulley diameter. As a result of evaluating the effect of exercises using a manufactured device, it was confirmed that the tread performed a predetermined swing motion. It was also confirmed that the COP position changed. Therefore, it is expected that knee joint stress will reduce. Rehabilitation and strength training that result in small knee joint stresses and generate large muscle load are in great demand for people experiencing knee joint failure.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM official website.
https://www.fujipress.jp/jrobomech/rb-about/#https://creativecommons.org/licenses/by-nd
前の記事 次の記事
feedback
Top