Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Navigation and Control Technologies for Autonomous Mobility
Localization System for Vehicle Navigation Based on GNSS/IMU Using Time-Series Optimization with Road Gradient Constrain
Aoki TakanoseKaito KondoYuta HodaJunichi MeguroKazuya Takeda
著者情報
ジャーナル オープンアクセス

2023 年 35 巻 2 号 p. 387-397

詳細
抄録

In this paper, we propose a GNSS/IMU localization system for mobile robots when wheel speed sensors cannot be attached. Highly accurate location information is required for autonomous navigation of mobile robots. A typical method of acquiring location information is to use a Kalman filter for position estimation. The Kalman filter is a maximum-likelihood estimation method that assumes normally distributed noise. However, non-normally distributed GNSS multipath noise that frequently occurs in urban environments causes the Kalman filter to break down, and degrades the estimation performance. Other GNSS/IMU localization methods capable of lane-level estimation in urban environments use wheel speed sensors, which are unsuitable for the present situation. In this study, we aim to improve the performance of lane-level localization by adding a vehicle speed estimation function to adapt the method to those requiring wheel speed sensors. The proposed method optimizes time-series data to accurately compensate for accelerometer bias errors and reduce GNSS multipath noise. The evaluation confirmed the effectiveness of the proposed method, with improved velocity and position estimation performance compared with the Kalman filter method.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2023 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM official website.
https://www.fujipress.jp/jrobomech/rb-about/#https://creativecommons.org/licenses/by-nd
前の記事 次の記事
feedback
Top