Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular Papers
Investigation of Obstacle Prediction Network for Improving Home-Care Robot Navigation Performance
Mohamad YaniAzhar Aulia SaputraWei Hong ChinNaoyuki Kubota
著者情報
ジャーナル オープンアクセス

2023 年 35 巻 2 号 p. 510-520

詳細
抄録

Home-care manipulation robot requires exploring and performing the navigation task safely to reach the grasping target and ensure human safety in the home environment. An indoor home environment has complex obstacles such as chairs, tables, and sports equipment, which make it difficult for robots that rely on 2D laser rangefinders to detect. On the other hand, the conventional approaches overcome the problem by using 3D LiDAR, RGB-D camera, or fusing sensor data. The convolutional neural network has shown promising results in dealing with unseen obstacles in navigation by predicting the unseen obstacle from 2D grid maps to perform collision avoidance using 2D laser rangefinders only. Thus, this paper investigated the predicted grid map from the obstacle prediction network result for improving indoor navigation performance using only 2D LiDAR measurement. This work was evaluated by combining the configuration of the various local planners, type of static obstacles, raw map, and predicted map. Our investigation demonstrated that using the predicted grid map enabled all the local planners to achieve a better collision-free path by using the 2D laser rangefinders only rather than the RGB-D camera with 2D laser rangefinders with a raw map. This advanced investigation considers that the predicted map is potentially helpful for future work in the learning-based local navigation system.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2023 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM official website.
https://www.fujipress.jp/jrobomech/rb-about/#https://creativecommons.org/licenses/by-nd
前の記事
feedback
Top