Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular Papers
Learning Variable Admittance Control for Human-Robot Collaborative Manipulation
Tasuku YamawakiLiem Duc TranMasahito Yashima
著者情報
ジャーナル オープンアクセス

2023 年 35 巻 6 号 p. 1593-1603

詳細
抄録

Human-robot collaboration has garnered significant attention in the manufacturing industry due to its potential for optimizing the strengths of both human operators and robots. In this study, we present a novel variable admittance control method based on iterative learning for collaborative manipulation, aiming to enhance operational performance. This proposed method enables the adjustment of admittance to meet task requirements without the need for heuristic designs of admittance modulation strategies. Furthermore, the incorporation of dynamic time warping in human operational detection assists in mitigating the learning performance decline caused by fluctuations in human operations. To validate the effectiveness of our approach, we conducted extensive experiments. The results of these experiments highlight that the proposed method enhances human-robot collaborative manipulation performance compared to conventional methods. This approach also exhibits the potential for addressing complex tasks that are typically influenced by diverse human factors, including skill level and intention.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2023 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM official website.
https://www.fujipress.jp/jrobomech/rb-about/#https://creativecommons.org/licenses/by-nd
前の記事 次の記事
feedback
Top