Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular Papers
Improved Visual Robot Place Recognition of Scan-Context Descriptors by Combining with CNN and SVM
Minying YeKanji Tanaka
著者情報
ジャーナル オープンアクセス

2023 年 35 巻 6 号 p. 1622-1628

詳細
抄録

Visual place recognition from a 3D laser LiDAR is one of the most active research areas in robotics. Especially, learning and recognition of scene descriptors, such as scan context descriptors that map 3D point clouds to 2D point clouds, is one of the promising research directions. Although the scan-context descriptor has a sufficiently high recognition performance, it is still expensive image data and cannot be handled with low-capacity non-deep models. In this paper, we explore the task of compressing the scan context descriptor model while maintaining its recognition performance. To this end, the proposed approach slightly modifies the off-the-shelf classifier model of convolutional neural networks (CNN) from its basis, by replacing the SoftMax part with a support vector machine (SVM). Experiments with publicly available NCLT dataset validate the effectiveness of the proposed approach.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2023 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM official website.
https://www.fujipress.jp/jrobomech/rb-about/#https://creativecommons.org/licenses/by-nd
前の記事 次の記事
feedback
Top