日本ロボット学会誌
Online ISSN : 1884-7145
Print ISSN : 0289-1824
ISSN-L : 0289-1824
論文
物体検出画像と深度画像を用いたCNNによる移動ロボットのEnd-to-End動作計画
吉田 遊友星野 智史
著者情報
ジャーナル フリー

2021 年 39 巻 5 号 p. 479-482

詳細
抄録

For autonomous navigation of mobile robots, obstacle avoidance in consideration of the destination is an essential capability. In this paper, we focus on a mobile robot equipped with RGB-D camera and LiDAR sensors, and propose an end-to-end motion planner based on a convolutional neural network, CNN, through imitation learning. In order for the robot to avoid various obstacles, we generate novel object detection images from the original RGB images. The object detection and depth images are then fed as inputs to the CNN. In a fully connected layer, moreover, a direction angle to the destination is inputted. In the navigation experiments, we show that the robot based on the proposed motion planner is able to move toward the goal destination while avoiding collisions with various obstacles.

著者関連情報
© 2018 日本ロボット学会
前の記事
feedback
Top