日本ロボット学会誌
Online ISSN : 1884-7145
Print ISSN : 0289-1824
ISSN-L : 0289-1824
論文
複数物体が存在する環境下での共同注意を用いたロボットによる語意学習
長野 匡隼中村 友昭
著者情報
ジャーナル フリー

2021 年 39 巻 6 号 p. 549-552

詳細
抄録

Humans can learn word meanings by associating objects with words even in an environment with a plurality of objects by using joint attention, which is an ability to detect a target object that others pay attention to. In this paper, we propose a method for robots to learn word meanings using joint attention and co-occurrence of objects and words, which is modeled by multimodal latent Dirichlet allocation (MLDA). A target object is detected by using MLDA and joint attention, and MLDA is updated by the detected object. This updated MLDA can improve the accuracy of the target object detection.

著者関連情報
© 2018 日本ロボット学会
前の記事 次の記事
feedback
Top