日本ロボット学会誌
Online ISSN : 1884-7145
Print ISSN : 0289-1824
ISSN-L : 0289-1824
隠れマルコフモデルと動作の階層構造の木表現による日常動作認識
森 武俊瀬川 友史下坂 正倫佐藤 知正
著者情報
ジャーナル フリー

2005 年 23 巻 8 号 p. 957-966

詳細
抄録
This paper presents a recognition method of human daily-life action. The method utilizes hierarchical structure of actions and describes it as tree. We modelize actions by Continuous Hidden Markov Models which output time-series feature vectors extracted based on knowledge of human. In this method, recognition starts from the root, competes the likelihoods of child-nodes, chooses the maximum one as recognition result of the level, and goes to deeper level. The advantages of hierarchical recognition are: (1) recognition of various levels of abstraction, (2) simplification of low-level models, (3) response to novel data by decreasing degree of details. Experimental result shows that the method is able to recognize some basic human actions.
著者関連情報
© 社団法人 日本ロボット学会
前の記事 次の記事
feedback
Top