人工知能学会第二種研究会資料
Online ISSN : 2436-5556
Kullback-Leibler カーネルの正規化スペクトル判別における特性
石垣 司樋口 知之
著者情報
研究報告書・技術報告書 フリー

2007 年 2007 巻 DMSM-A701 号 p. 15-

詳細
抄録

The kernel classifier that realizes a nonlinear classification such as Support Vector Machine has been successfully implemented in a number of fields. In the kernel method, the appropriate selection or design of the kernel function is important for the construction of a classifier that has high performance. The present paper describes a normalized frequency spectrum classification method using the SVM with the Kullback-Leibler (KL) kernel. We introduce the KL kernel to normalized spectrum classification and study the property of similarity calculation of the KL kernel and other common kernels with respect to the change in the appearance position of spectrum peaks.

著者関連情報
© 2007 著作者
前の記事 次の記事
feedback
Top