人工知能学会第二種研究会資料
Online ISSN : 2436-5556
時系列データを学習・生成する階層的ニューラルネットワーク
柳川 誠介
著者情報
研究報告書・技術報告書 フリー

2017 年 2017 巻 AGI-005 号 p. 01-

詳細
抄録

Time series data can be divided into basic strings in which components do not appear multiple times. In the previous paper, the neural network which processes the basic strings were presented. By hierarchical connection of the neural networks general time series data can be processed. The neural network shown in this paper has the function of dividing general time series data into basic string. And by using grammatical structure on hierarchical connections, learning of time series data and generation can be realized. We aim to neural model of animals acting adaptively without advanced pattern recognition ability.

著者関連情報
© 2017 著作者
次の記事
feedback
Top