人工知能学会第二種研究会資料
Online ISSN : 2436-5556
強化学習によるクルーズ型AUVのピッチ角選択アルゴリズム~高速かつ低高度な海底追従を目指して~
野口 侑要巻 俊宏
著者情報
研究報告書・技術報告書 フリー

2017 年 2017 巻 AGI-005 号 p. 06-

詳細
抄録

Low altitude survey of seafloor is important in various fields, such as biological research or resource survey. An AUV (Autonomous Underwater Vehicle) plays an important role. In this paper, we propose a new terrain following method, in which a reinforcement learning agent sets an appropriate pitch reference. We expect the new method results in self-adaptive to the environment. We conducted a simulation based analysis, in which the AUV traveled at a high surge speed (~2 m/s) in various sonar echo level environment.

著者関連情報
© 2017 著作者
前の記事 次の記事
feedback
Top