人工知能学会第二種研究会資料
Online ISSN : 2436-5556
深層学習と拡張手がかり表現による業績要因文への極性付与
酒井 浩之坂地 泰紀山内 浩嗣町田 亮介阿部 一也
著者情報
研究報告書・技術報告書 フリー

2017 年 2017 巻 FIN-018 号 p. 06-

詳細
抄録

In this paper, we propose a method of assigning polarity to causal information extracted from summary of financial statements of companies. Our method assigns polarity (positive or negative) to causal information in accordance with business performance, e.g. "Orders of semiconductor manufacturing equipments were strong". First, we assigns polarity to extended clue expressions to be used to extract causal information. Using them, our method automatically generates training data and assigns polarity to causal information by deep learning. We evaluated our method and confirmed that it attained 86.7% precision and 95.4% recall of assigning polarity positive, and 90.0% precision and 73.9% recall of assigning polarity negative, respectively.

著者関連情報
© 2017 著作者
前の記事 次の記事
feedback
Top