人工知能学会第二種研究会資料
Online ISSN : 2436-5556
高頻度注文情報を用いたデータの層化と多段階事前学習による株価動向予測
松原 冬樹和泉 潔坂地 泰紀
著者情報
研究報告書・技術報告書 フリー

2021 年 2021 巻 FIN-026 号 p. 69-

詳細
抄録

Predicting the movement of stock price is an important issue for market participants. Recently, there have been many attempts applying machine learning techniques in financial time series prediction. However, overfitting presents a huge challenge when machine learning approaches are used in financial time series prediction. In this paper, we propose a stock price prediction method utilizing limit order book data from stocks other than target stocks by stratifying the data and holding a multi-phase pre-training considering market liquidity. Experimental results shows that the proposed approach enhances prediction performance.

著者関連情報
© 2021 著作者
前の記事 次の記事
feedback
Top